147. Fading and Tendering Activity in Anthraquinonoid Vat Dyes.

 Part II. ${ }^{1}$ Fluorescence, Absorption Spectra, and Stability to Light of Dyed Films.By J. J. Moran and H. I. Stonehill.

A modification of the Beer-Lambert law is derived, which allows for the effect of fluorescence. The modified law is verified by absorption measurements on dyed cellulose films. A simple method, involving comparison of absorption spectra obtained with dispersion respectively before and after absorption, is employed to detect the fluorescence of dyed cellulose acetate films, and to locate approximately the wavelength regions of fluorescence excitation and emission. This method is also used in investigations of fading and tendering (oxidative degradation) of these films, for which purpose it is more sensitive than conventional spectrophotometric or visual examination. There is no simple correlation of fluorescence with molecular structure for the dyes examined, or of either fluorescence or absorption spectra with fading and tendering activity.
In Part I ${ }^{1}$ it was shown that fluorescence of vat dye solutions caused deviations from Beer's and Lambert's laws on use of the usual type of photoelectric absorption spectrophotometer with no dispersion (" monochromatisation ") after absorption, e.g., the Hilger Uvispek instrument. Fluorescence excited by monochromatic absorbed light reaches the non-selective photocell in this type of instrument and affects it as if it were unabsorbed incident light, causing spuriously low optical density readings. This effect, which has been discussed by Braude, Fawcett, and Timmons ${ }^{2}$ and by Ovenston, ${ }^{3}$ could be virtually eliminated by monochromatisation both before and after absorption, or by balancing out the fluorescence-induced fraction of the photocell current by the output of a second photocell excited by light collected at 90° to the direction of the incident light.

In this paper, (i) the Beer-Lambert law is modified to allow for fluorescence, and the modified law is verified by absorption measurements on dyed cellulose films, (ii) a method involving comparison of absorption spectra obtained with dispersion respectively before and after absorption is employed to detect the fluorescence of dyed cellulose acetate films, and to locate approximately the wavelength regions of fluorescence excitation and emission, and (iii) this method is used to study fading and tendering (oxidative degradation) of the dyed films.

Experimental

The purification of the dyes has been described. ${ }^{1}$ To prepare dyed films, $50 \times 20 \mathrm{~cm}$. sheets of glycerol-plasticised regenerated cellulose, $0.0025-0.0625 \mathrm{~mm}$. thick (British Sidac Ltd.) and somewhat smaller sheets of unplasticised commercial cellulose acetate, ca. 1 mm . thick, were dyed for $1-2 \mathrm{hr}$. in 50 ml . of 0.05 N -sodium hydroxide containing $3-4 \mathrm{~g}$. of sodium dithionite and ca. 0.5 g . of dye at $50-70^{\circ}$, depending on the dye. ${ }^{4}$ The films were then washed in running water and steamed for 15 min . The thick acetate films dried satisfactorily in the air, but the thinner cellulose films tended to wrinkle. They were therefore stretched over a flat glass plate while wet, smoothed with a glass rod, folded in half four times, smoothing after each fold, stretched over a $10 \times 4 \mathrm{~cm}$. flat glass plate, secured by rubber bands, and allowed to dry in the air; the resulting homogeneous laminated films could be progressively decreased in thickness by peeling off layers. Unlike the acetate, the cellulose film absorbed ultraviolet light strongly because of the plasticiser present.

[^0]For determining spectra with the films in the normal or " a " position of the Hilger Uvispek instrument (between prism and photocell), dyed and reference undyed films, held flat in suitable sheet-metal frames which exposed rectangular areas similar to those of absorption cells, were placed in the holder normally occupied by absorption cells. Spectra were also determined with the films in the " b " position (between light source and prism), the metal frames being held in a vertical plane perpendicular to the light beam and arranged so that either the dyed or the undyed film could be interposed in the beam. The frames were painted with matt opticalblack paint to minimise reflection. Errors in the " b " position due to defocusing of the lamp-filament image, diffraction, etc., were minimised by varying the position of the lamp to obtain maximum photocell response; matching of the apertures of the two frames was checked by photocell response. A cell containing sodium nitrate solution was interposed between the lamp housing and the films in the " b " position to filter out any ultraviolet light and to absorb heat, thus preventing undue rise in vibrational energy levels. A didymium test filter was used to check the equivalence of spectra in the " a " and the " b " position for a nonfluorescent system.

Fading tests were carried out on long strips of dyed cellulose acetate films, which were cut into four equal parts. The absorption spectrum of one part was determined immediately after dyeing, and that of a second part at intervals over a period of 2 months during which the sample

Fig. 1. Effect of fluorescence on optical density of various thicknesses of cellulose film dyed with Cibanone Golden Yellow GK.
was irradiated by a Point-o-Lite arc. The arc was placed at the focus of a parabolic reflector, vertically above the film, which rested on a glazed white porcelain slab. To control humidity, a large flat dish of water was held beneath the porcelain slab, and a slow stream of air was directed by a fan partly on the films and partly on the water surface. The fading-test apparatus was housed in a wooden box; an enclosed thermometer showed no signficant departure from 24° during tests. A third portion of dyed film was exposed in the fading-test apparatus while shielded from light, in order to test the effect of atmospheric weathering. The first and the fourth portion of the film were used to examine semiquantitatively the effects of soaping and soaking in dilute hydrogen peroxide before irradiation.

Results and Discussion

(i) Deviation from Beer's and Lambert's Laws due to Fluorescence.-Fig. 1 is a typical plot of optical density d against thickness l (expressed as the number n of equal layers in the laminate) for cellulose film dyed with Cibanone Golden Yellow GK, held in the normal (" a ") position, the monochromator of the Uvispek being set at $446 \mathrm{~m} \mu$, an absorption maximum for the system. It consists of two essentially linear sections of different slope, joined by a smooth curve. Similar graphs were obtained when d was plotted against l for various constant concentrations c for chlorobenzene solutions of the same dye at absorption peak wavelengths 411,438 , and $466 \mathrm{~m} \mu$, the deviations from linearity (Lambert's law) being most pronounced at $456 \mathrm{~m} \mu$ and least at $411 \mathrm{~m} \mu$. The data of
these plots also revealed a similar deviation from the linear Beer's law relation between d and c at constant l. Similar results were obtained with $d-l$ plots for chlorobenzene solutions of several other vat dyes listed in Table 1 of Part I, and for p-benzoquinone in n-hexane, at visible absorption-peak wavelengths. It may be shown as follows that this type of plot, deviating from Beer's and Lambert's laws, is to be expected whenever fluorescence emission reaches the photocell of the spectrophotometer. Let I_{x} be the intensity of a beam of monochromic fluorescence-exciting light, of molar extinction coefficient $\varepsilon=$ $k / 2 \cdot 303$, after it has traversed a path-length x in an absorption cell of length l containing solution of molarity c. Then

$$
\begin{equation*}
\mathrm{d} I_{x}=-k c I_{\mathrm{o}} \mathrm{e}^{-k c x} \mathrm{~d} x \tag{1}
\end{equation*}
$$

Suppose that a fraction α of the absorbed light - $\mathrm{d} I_{x}$ is emitted as fluorescence in the direction of the exciting beam. Then the change in the intensity of the fluorescence due to passage through path-element $\mathrm{d} x$ is the sum of a term similar to $\mathrm{d} I_{x}$ for absorption and another equal to $-\alpha \mathrm{d} I_{x}$ for emission. Thus, using primes to refer to the fluorescent light, we have

$$
\begin{equation*}
\mathrm{d} I_{x}^{\prime}=-k^{\prime} c I_{x}^{\prime} \mathrm{d} x+\alpha k c I_{\mathrm{o}} \mathrm{e}^{-k c x} \mathrm{~d} x \tag{2}
\end{equation*}
$$

where the approximation has been made of using an average value of $k^{\prime}=2 \cdot 303 \varepsilon^{\prime}$ over the wavelength range of the fluorescence. Since $I^{\prime}{ }_{o}=0$, this gives, upon integration between $x=0$ and $x=l$,

$$
\begin{equation*}
I^{\prime}{ }_{l}=I_{\mathrm{o}}\left(\mathrm{e}^{-k c l}-\mathrm{e}^{-k^{\prime} c l}\right) \alpha k /\left(k^{\prime}-k\right) \tag{3}
\end{equation*}
$$

Lauer ${ }^{5}$ obtained an expression for $\mathrm{d}^{\prime}{ }_{x}$ for a somewhat different geometrical arrangement; if it is modified so as to apply to the present system, it leads on integration to expression (3).

With the reasonable simplifying assumption that the photocell response is the same for exciting and fluorescent light, the observed optical density is :

$$
\begin{equation*}
d=\log I_{\mathrm{o}}\left(I_{l}-I_{\imath}^{\prime}\right) \tag{4}
\end{equation*}
$$

Using (3) and noting that $I_{l}=I_{\mathrm{o}} \mathrm{e}^{-k c l}$, we have

$$
\begin{equation*}
d=-\log \mathrm{e}^{-k c l}-\log \left[1-\left(\mathrm{e}^{\left(k-k^{\prime}\right) c l}-1\right) \alpha k /\left(k-k^{\prime}\right)\right] \tag{5}
\end{equation*}
$$

The first term on the right-hand side of eqn. (5) is equal to $d_{\text {true }}=-\log \left(I_{l} / I_{0}\right)=$ $k c l / 2 \cdot 303=\varepsilon c l$, the true optical density for the exciting light, which would be observed in the absence of fluorescence. Since $k>k^{\prime}$ in view of the relative probabilities of the two optical transitions concerned, it follows from eqn. (5) that $d<d_{\text {true }}$ always.

We now consider two limiting special cases. First, for small values of $c l$, eqn. (5) approximates to :

$$
\begin{equation*}
d=(1-\alpha) \varepsilon c l \tag{6}
\end{equation*}
$$

Thus the graph of d against $c l$ is linear near the origin, with a slope $s_{1}=(1-\alpha) \varepsilon$ which is smaller than the Beer-Lambert value by a factor which is a function of the fluorescence efficiency. The observed agreement with the Beer-Lambert law for dilute solutions or short absorption paths is only apparent.

Secondly, for large values of $c l$, eqn. (5) approximates to :

$$
\begin{equation*}
d=\varepsilon^{\prime} c l+\log \left[\left(\varepsilon-\varepsilon^{\prime}\right) / \alpha \varepsilon\right] \tag{7}
\end{equation*}
$$

Again the graph of d against $c l$ is linear, with a slope $s_{2}=\varepsilon^{\prime}$ and an intercept $\log i$, where $i=\left(\varepsilon-\varepsilon^{\prime}\right) / \alpha \varepsilon$. From the above values of s_{1}, s_{2}, and i, it follows that

$$
\begin{equation*}
\varepsilon=\left(i s_{1}-s_{2}\right) /(i-1), \varepsilon^{\prime}=s_{2}, \text { and } \alpha=\left(s_{1}-s_{2}\right) /\left(i s_{1}-s_{2}\right) \tag{8}
\end{equation*}
$$

Equations (8) were applied to laminated cellulose films dyed with various vat dyes, rather than to dye solutions, in order to minimise complications due to association,
${ }^{5}$ Lauer, J. Opt. Soc. Amer., 1951, 41, 482.

Table 1. Corrected extinction coefficients for dyes on cellulose.

Dye	Monochromator setting ($\mathrm{m} \mu$).	ε	ε^{\prime}	α
Cibanone Golden Yellow GK	440	12,700	363	0.0745
Cibanone Yellow GK	480	11,850	425	0.002
Caledon Red 5G	510	8,950	105	0.034
Caledon Yellow 5GK	430	12,400	445	0.058
Caledon Yellow 4G	440	24,500	710	0.032
Indanthren Yellow FFRK	420	15,100	1240	0.094
Cibanone Brilliant Orange RK	530	20,600	625	0.078
Caledon Jade Green XN	605	28,800	210	0.028

Fig. 2.

Fig. 3.

Fig. 4.

Figs. 2-4. Absorption spectra of (Fig. 2) 1-aminoanthraquinone, (Fig. 3) Caledon Red 5G, and (Fig. 4) Cibanone Yellow 2GR, dyed on cellulose acetate. Left-hand plots before and right-hand plots after exposure.

Continuous lines are " a " curves, broken lines " b " curves.
quenching, etc. The value of $c l$ was varied by peeling off successive equally thick layers from the laminate. The results obtained are listed in Table 1. Since the value of i is the same whether d is plotted against $c l$ or against n, the number of layers in the laminate, it follows that α may be calculated from eqn. (8) by using the slopes of the $d-n$ graphs, which are equal to $a s_{1}$ and $a s_{2}$, where a is the value of $c l$ for a single layer. However, to
Table 2．Spectra of dyed cellulose acetate films（wavelengths in $\mathrm{m} \mu$ ）．

$$
\overbrace{\lambda_{\text {max }} ; \quad \lambda_{\text {max }} ; \quad \varepsilon_{b}>\varepsilon_{a} \varepsilon_{b}<\varepsilon_{a}}^{\text {Film after exposure }}
$$

Tender－
ing
activ－
ity ${ }^{11}$
Film darkened and became very brittle，owing to film degradation and formation of probably a
Marked fading（both ε_{a} and ε_{b} decrease，ε_{b} more than ε_{a} ）．Benzoylation renders attack less severe than
in previous case． Behaves like preceding dye．＂a＂and＂b＂curves become almost coincident（loss of fluorescence） with a dark control），showing fading swamped by Slight fading，but＂a＂and＂b＂curves remain separated，showing that fluorescence is unaffected by exposure．
Similar to Cibanone Yellow GK． Similar to Cibanone Yellow GK． ing diminished fluorescence due to film degrad－ Similar to Indanthren Yellow FFRK．
Similar to Indanthren Yellow FFRK．
 only slight fading．

$$
\begin{gathered}
\text { Light } \\
\text { fast- }
\end{gathered}
$$

$$
\text { ness }^{11}
$$

$$
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
> & >
\end{array}
$$

$$
\begin{gathered}
- \\
490- \\
600 \\
-
\end{gathered}
$$ peaks，and film becomes opalescent（not observed

ε_{a} remains greater than ε_{b} in the peak region，but ing diminished fluorescence due to film degrad－
ation，which outweighs fading． ＂b＂curves to those characteristic of Indanthren

ε_{a} and ε_{b} decrease（fading）and reverse relative magni－

Both ε_{a} and ε_{b} increase and tend towards equality， indicating film degradation which diminishes
Despite structural similarity to preceding two dyes，

$$
\begin{aligned}
& \text { む } \\
& \text { H }
\end{aligned}
$$

受

$$
\begin{aligned}
& \text { "o } \\
& 0 \\
& \dot{\circ} \\
& \stackrel{\circ}{r}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& \circ \\
& \stackrel{0}{0} \\
& >
\end{aligned}
$$

$$
\begin{aligned}
& \text { '0 } \\
& 8 \\
& 8 \\
& >
\end{aligned}
$$

$$
0
$$

$$
\begin{aligned}
& \text { good } \\
& \text { good }
\end{aligned}
$$

$$
-
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \infty \\
& >
\end{aligned}
$$

do

$$
1
$$

$$
\stackrel{H}{H}
$$

운
436

응

435
437
$422 \quad 424$
436
604
v. good
${ }_{10}^{\infty}$ 융 1 ర్ల్రి

8
8
논 승응
Film before exposure
$\overbrace{\lambda_{\text {max }}, ~}^{\lambda_{\text {max }},} \quad{ }^{\lambda \lambda \text { for which }}$

욱 으웅
8 눈

422
जे

1
d్ల్రి
$60-$
640
$42-$
640
$10-$
437
109
11
<412
11
O．
た్ల్రి
d్లి 융 435438 $\begin{array}{ll}497 & 510 \\ 460 & 458\end{array}$

$\mathbf{5 0 0}$	512
480	473
546	545
432	434
452	454
420	420

$420 \quad 420$ $430 \quad 436$
 $460 \quad 460$ 809809
492
\qquad

苶 눈 웅ㄹ
 punoduos （Acyl）aminoanthraquinones $\begin{array}{ll}\begin{array}{l}\text { 1－Aminoanthra－} \\ \text { quinone }\end{array} & 497 \\ & 430.5\end{array}$ $430 \cdot 5$ 538俞 $\begin{array}{lc}\text { Caledon Red 5GS } & 538 \\ \text { Cibanone Yellow GK } & 425 \\ & 465 \\ \text { Caledon Red X5BS } & 538 \\ \text { Caledon Yellow 5GK } & 426 \\ \text { Caledon Yellow 4G } & 490 \\ \begin{array}{c}\text { Carbazoles } \\ \text { Indanthren Yellow } \\ \text { Crin }\end{array} & 438\end{array}$ $\begin{array}{lc}\text { Caledon Red 5GS } & 538 \\ \text { Cibanone Yellow GK } & 425 \\ & 465 \\ \text { Caledon Red X5BS } & 538 \\ \text { Caledon Yellow 5GK } & 426 \\ \text { Caledon Yellow 4G } & 490 \\ \begin{array}{c}\text { Carbazoles } \\ \text { Indanthren Yellow } \\ \text { CFRK }\end{array} & 438\end{array}$ $\begin{array}{lc}\text { Caledon Red 5GS } & 538 \\ \text { Cibanone Yellow GK } & 425 \\ & 465 \\ \text { Caledon Red X5BS } & 538 \\ \text { Caledon Yellow 5GK } & 426 \\ \text { Caledon Yellow 4G } & 490 \\ \begin{array}{c}\text { Carbazoles } \\ \text { Indanthren Yellow } \\ \text { CFRK }\end{array} & 438\end{array}$
438 505

$427 \cdot 5$
473
485 514^{6}
Caledon Olive 1R
Caledon Gold Orange
3G
Cibanone Yellow 3R
Triazines
Cibanone Yellow
2GR
Cibanone Red G
Cibanone Red 4B
Cibanone Red 4B

 increases film degradation which reduces fluorescence
emission．
Does not behave like preceding structurally similar dye．Exposure completely destroys dye，producing
a new absorbing species．
Slight fading．Note difference in fluorescence char－ acteristics（relative positions of＂a＂and curves）between this and the following dye despite
structural similarity．
Slight fading．Cf．preceding dye．
Film becomes dull and brittle．Some fading， swamped by reduced fluorescence due to film de－
gradation，as with Indanthren Yellow FFRK．
Similar to preceding dye．
no film degradation，but considerable dye dis－
Slight fading．Dichromatism in solution ${ }^{1}$ probably
due to long－wavelength fluorescence excited by due to long－wavelength fluorescence excited by absorption at the $600 \mathrm{~m} \mu$ band．
Slight fading．
 Slight fading．

moderate
moderate
 absorption at the $600 \mathrm{~m} \mu$ band．
 v．good
v．good
high
TABLe 2.

1

360
610
good

응 o 1
1 1 号范 ।
Light－exposure behaviour
te ε_{a} increases more than，and nearly overtakes，ε_{b} ，indi－
cating film degradation which reduces fluorescence
emission．
Does not behave like preceding structurally similar
dye．Exposure completely destroys dye，producing
a new absorbing species．
Slight fading．Note difference in fluorescence char－
acteristics（relative positions of＂and＂${ }^{\text {＂}}$
curves）between this and the following dye despite
structural similarity．
Slight fading．Cf．preceding dye．

Film becomes dull and brittle．Some fading，
swamped by reduced fluorescence due to film de－
gradation，as with Indanthren Yellow FFRK．
Similar to preceding dye．
Despite structural similarity to preceding two dyes，
no film degradation，but considerable dye dis－
integration and loss of fluorescence（ ε_{a} and ε_{b}
decrease greatly and become equal）．
 1

Film before exposure			
$\lambda_{\text {max }}$	$\lambda_{\text {max }}{ }^{\prime} ;$	$\begin{aligned} & \lambda \lambda \text { for } \\ & \varepsilon_{b}>\varepsilon_{a} \end{aligned}$	which $\varepsilon_{b}<\varepsilon_{a}$
507	510	$\begin{gathered} 405 \\ 640 \end{gathered}$	－
526	530		
507	503	$\begin{gathered} 360- \\ 640 \end{gathered}$	－
530	531		
438	442	－	$\begin{gathered} 360- \\ 510 \end{gathered}$
438	448	$\begin{gathered} 428- \\ 640 \end{gathered}$	<428

\qquad

 1 앙
앙 d di

\circ
8
8
$>$
$\stackrel{\text { N゙ }}{\text { స゙ }}$

508
ริ\％ g
6ず
432
580

-098

510
530
470
488
438
LZF
471
$\frac{\infty}{4}$
∞
+
+
+
+
ケั か
업
잉
웅
홍
㤩品
앙

ค్
なが
웅大命 우욲 앙最出品
436
이ㅇㅕㅓ
욱
『～N
成皆 앙 Io $\partial \kappa_{\text {G }}$ Anthanthrones Cibanone Brilliant

Cibanone Brilliant
 Orange RK

Dibenzopyrenequinones Cibanone Golden
Yellow GK
Cibanone Golden
Yellow RK

（iso）Dibenzanthrones
Caledon Jade Green
XN
웅

Caledon Brilliant
Purple 4RN
Cibanone Brilliant
Green 2B ${ }^{\text {a }}$
Cibanone Navy Blue
RAa
Caledon Brilliant
Green G^{a}
Table 2．（Continued）
Film after exposure \quad Light
Film before exposure $\overbrace{-}^{\text {Film after exposure }}$

苞		$\begin{gathered} \underset{\sim}{*} \\ \underset{V}{2} \end{gathered}$	－		dol		
$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \dot{x} \\ & 0 \\ & 0 \end{aligned}$		ฝু		Cop Oi			
$\frac{8}{\mathbb{8}}$		²	$\begin{aligned} & \circ \\ & i 0 \\ & \hline 0 \end{aligned}$	$\underset{\infty}{\infty}$	～	ホ్＊	\％
$\sum_{i=1}^{\prime!}$		\％	${ }_{10}^{\infty}$	－	$\stackrel{\sim}{\sim}$	ホ్＊	N

䖝．
EtOH
Dye or
compound Indanthrones Cibanone Blue RSN 442 Caledon Blue RC 609

668

440
ค

Miscellaneous S－containing dyes			
Caledon Yellow 5G	400	435	436
Cibanone Orange R	422	422	424

> Flavanthrones Caledon Yellow GN Caledon Yellow $2 \mathrm{R}^{a}$ Caledon Yellow 3RF a

Miscellaneous S－containing dyes			
Caledon Yellow 5G	400	435	436
Cibanone Orange R	422	422	424

Miscellaneous N－containing dyes
Cibanone Red 2B $\quad 448$
Miscellaneous N－containing dyes
Cibanone Red 2B $\quad 448 \quad 514$
 뮹

Light－exposure behaviour

Slight fading．Longer－wavelength band excites
fluorescence after exposure．
Little effect except some loss of fluorescence（＂a＂ and＂b＂spectra approach coincidence after
exposure）． exposure）．
Exposure destroys dye，producing a new absorbing Some fading．
Some fading and loss of fluorescence（difference be－
tween ε_{d} and ε_{b} decreases）．
ε_{a} and ε_{b} increase，as with Cibanone Yellow GK， Film became brittle，powdering readily，and milky with dark patches．No spectra measurable with
Similar to Indanthren Yellow FFRK．
Both ε_{a} and ε_{b} increase，indicating tendering of sub－ strate，which partly quenches fluorescence emis－ Slight fading．
Similar to Cibanone Red RK．
Tender－
ing
activ－
ity ${ }^{11}$
prob．
none
prob．
none
əuou

430	433	444	$360-$	moderate v．high
		550	444	
	-	-	-	moderate high

을
$\stackrel{8}{8}$
\＃
苞
O．
品
low

$\begin{aligned} & 0 \\ & \hline 8 \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{8} \\ & \dot{>} \end{aligned}$		$\begin{aligned} & \text { O} \\ & \hline 8 \\ & \hline 0 \end{aligned}$
1	$\stackrel{\text { ® }}{\text { ® }}$	${ }_{0}^{1} 0$	$\stackrel{\infty}{\sim}$
do io	do		¢\％
${\underset{i n}{0}}_{\infty}^{\infty}$	F	©	家宫
∞		프웈	Noㅇㅇㅇ 앙

$\hat{\omega}_{\omega}$	$\begin{aligned} & 10 \\ & \text { Oi } \\ & \hline 10 \end{aligned}$		$\underset{\infty}{\infty} \underset{\infty}{\infty}$			¢
10	\％	8	8	8	等	F
$\stackrel{+}{-}$	$\underset{\sim}{\infty}$	8	¢	－	ボ	N

<444
$360-$
453
ర్ల్ల
N
K
V C_{0}^{∞}
$\stackrel{\text { NO}}{\stackrel{\circ}{\circ}}$
Hy

N

Miscellaneous S－containing dyes			
Caledon Yellow 5G	400	435	436
Cibanone Orange R	422	422	424

Cibanone Orange R 422
Cibanone Red RK $\quad \begin{aligned} & 5322^{6} \\ & 451.5\end{aligned}$
$451.5 \quad 439$
 $\stackrel{8}{8} 8$
8

determine ε and ε^{\prime} from eqn. (8), the value of a was required. It was evaluated by measuring d for a dilute ethanolic solution of the dye concerned at a known concentration, calculating ε from eqn. (6) with the value of α obtained for the film by eqn. (8), and then using this value of ε to calculate $c l$ by applying eqn. (6) to the value of d observed for a single layer of dyed film.

The fluorescence efficiency could be calculated from the value of α and the geometry of the system, but this was not attempted.
(ii) Wavelength Regions of Fluorescence Excitation and Emission.-Although the measurements described above demonstrate the existence of fluorescence, they are tedious, and moreover give no information about the wavelength region of the fluorescence. A technique was therefore used of comparing the visible spectra ($360-640 \mathrm{~m} \mu$) of dyed films of cellulose acetate (chosen for rigidity) with the films in alternative positions. These were (a) between monochromator and photocell, the normal arrangement, which gives a low apparent optical density at wavelengths which excite fluorescence, and (b) between polychromatic light source and monochromator, which leads to low optical-density readings when the monochromator is set at a wavelength at which fluorescence is emitted. Thus, if the " a " and " b " spectra are superimposed, the " a " will lie above the " b " curve at fluorescence emission wavelengths, and below it at excitation wavelengths. If, therefore, the main visible absorption band excites fluorescence of much longer wavelengths, the " a " curve will lie below the " b " over most of the visible spectrum. If, however, the fluorescence is excited by the near-ultraviolet and lies within or near the main visible absorption band, the reverse will be true. Lastly, if exciting and excited wavelengths are similar, a combination of the two previous effects may occur, and the " a " and the " b " curve will cross; their relative positions will still indicate, as described above, the spectral regions of excitation and emission.

The results obtained are exemplified by Figs. 2-4 and summarised in Table 2 (cols. 5 and 6). Apart from a general slight bathochromic shift, the film spectra are similar to those of ethanolic solutions of the dyes (cf. Table 2, cols. 3 and 4), with the exception of Caledon Red 5G, Gold Orange G, and Brilliant Purple 4R. Since reabsorption of fluorescence occurs preferentially on the short-wavelength side of the emission band, altering the position of maximum fluorescence and the apparent fluorescence band shape, ${ }^{6}$ the present technique gives only limited and approximate information about emission and exciting wavelengths. In the few cases where the " b " lies above the " a " curve at one absorption peak, and below it at a longer-wavelength peak, it may be assumed that absorption at the shorter wavelength is followed, after some energy degradation, by re-emission in the region of the longer wavelength. In all other cases, the precise excitingand excited-wavelength regions are unknown, so that correlation of fluorescence properties with fading or tendering activity is impossible; it is necessary for this purpose to use a technique ${ }^{7,8}$ which minimises reabsorption of fluorescence. The present method does, however, provide a sensitive indication of fading and tendering of dyed films, as shown in the next section. It also leads to an explanation of the well-known effect of soaping and steaming in increasing the optical absorption of dyed films. Waters, Sumner, and Vickerstaff ${ }^{9}$ explained this as due to dye aggregation, resulting in perturbed dye energy levels and transitions of lower energy and greater probability. We have found that soaping decreases the extent of fluorescence but does not cause the bathochromic shift expected from this theory. This suggests that dye aggregation decreases fluorescence emission by self-quenching, ${ }^{10}$ thus increasing the apparent optical density.

[^1](iii) Weathering and Light-exposure Tests on Dyed Films.-Atmospheric weathering in the dark had little or no effect on the spectra; on the other hand, only for Cibanone Red 4B was simultaneous weathering and light exposure without appreciable effect. Pretreatment by soaping and with hydrogen peroxide decreased and increased, respectively, the exposure effects, as is to be expected.

The effects of light exposure on the spectra of the dye-substrate complex may be diverse. Either the " a " or the " b " spectrum intensities can independently increase or decrease. A decrease may be due to actual fading or to decreased self-quenching of fluorescence, the latter arising from either decreased dye-particle size, ${ }^{10}$ or from weakened binding of dye to substrate after tendering. Light-scattering by degraded film may also decrease apparent optical density. An increased intensity may be caused if film degradation strengthens the binding of dye. All of these possibilities were realised, as shown in the film exposure results given in Table 2, which refer to the state where further exposure had little effect. Generally a long induction period was followed by a steady change to the final state. In all cases the initially lower of the two absorption curves was the more sensitive to exposure, responding more rapidly at first, but also falling off in further response more rapidly. The interim effect was thus a differential movement of the relative positions of the " a " and the " b " curves. Some of the films darkened visibly and became brittle during exposure. In the most severe example, with Cibanone Orange R, this rendered determination of the final spectrum impossible. The interim spectra for this dye were anomalous in that the optical density first decreased, and then increased to values far greater than the initial. This behaviour was shown to a smaller extent by all the active yellow and orange dyes, and is due to tendering, the films becoming duller and, in some cases, opalescent.

As expected, exposure produced most marked effects with the active yellow and orange dyes, the most severe cases being Cibanone Orange R and Cibanone Brilliant Orange RK. With the latter, a spectral change was observed after only 3 days' exposure; after 1 month, the original spectrum had disappeared completely, leaving a spectrum of similar form to the original but displaced hypsochromically by some $40 \mathrm{~m} \mu$. However, no differential shift of the " a " and the " b " curve occurred, so the fluorescence emission-excitation properties were unchanged. This behaviour is the more anomalous in that Cibanone Brilliant Orange GK, which differs structurally from the RK dye merely in the replacement of bromine by chlorine and is initially almost indistinguishable from it spectrally, is scarcely affected by exposure. Only 1-aminoanthraquinone and Caledon Yellow GN exhibited similar large spectral shifts on exposure.

Beyond the expected greater sensitivity of the acknowledged active dyes to light, there is little regularity in the results of the exposure tests. Even within the class of active dyes there is little consistency. A slight alteration in molecular structure leads to great variations in exposure effects. The difference in behaviour between Algol Yellow WG and Cibanone Yellow GK (l-benzamido- and 1:5-dibenzamido-anthraquinone) is as marked as that between chloro- and bromo-anthanthrones noted in the previous paragraph. The anomalous light-stability of the 4 -acylamino-anthraquinones is of interest since the solution spectra of these dyes do not fall into line with those of other acylaminoanthraquinones. ${ }^{11}$ Within the triazine group of dyes there is again considerable diversity in behaviour on exposure. The carbazole group behaves fairly uniformly, except for Cibanone Yellow 3R which apparently changes spectrally on exposure towards the parent unsubstituted dye of this group.

In conclusion, the absorption-emission characteristics of these dyes on cellulose acetate substrate are not simply correlated with either molecular structure or fading-tendering activity. It is noteworthy, however, that observation of changes in fluorescence-emission properties on exposure is far more sensitive as a criterion of fading or tendering than either a visual or a simple spectrophotometric examination.
${ }^{11}$ Fox, J. Soc. Dyers and Colourists, 1949, 65, 508; Landolt, ibid., p. 659.

We thank the Kent Education Committee for the award (to J. J. M.) of a research assistantship, and Imperial Chemical Industries Limited, Dyestuffs Division, The Clayton Aniline Co., Bernard Keegan and Co., and British Sidac Ltd. for gifts of materials.

Medway College of Technology, Chatham, Kent.
[Present address (J. J. M.) : Cosmos Imperial Mills Ltd., Hamilton, Ontario, Canada.]

[^0]: ${ }^{1}$ Part I, Moran and Stonehill, preceding paper.
 ${ }^{2}$ Braude, Fawcett, and Timmons, J., 1950, 1019 ; Braude and Timmons, Photoelectric Spectrometry Group Bull., 1953, No. 6, 139.
 ${ }^{3}$ Ovenston, Photoelectric Spectrometry Group Bull., 1953, No. 6, 132.
 "Fox, "Vat Dyestuffs and Vat Dyeing," Chapman and Hall, London, 1946.

[^1]: 6 Bowen and Wokes, " Fluorescence of Solutions," Longmans Green, London, 1953, pp. 55-56.
 ${ }^{7}$ Lauer and Rosenbaum, J. Opt. Soc. Amer., 1951, 41, 451.
 ${ }^{8}$ Bowen, Photoelectric Spectrometry Group Bull., 1953, No. 6, 124.
 ${ }^{2}$ Waters, Sumner, and Vickerstaff, J. Soc. Dyers and Colourists, 1953, 69, 181.
 10 Bowen, "Chemical Aspects of Light," Oxford Univ. Press, 2nd. Ed., 1946, p. 168.

